Species differences in the response of liver drug-metabolizing enzymes to (S)-4-O-tolylsulfanyl-2-(4-trifluormethyl-phenoxy)-butyric acid (EMD 392949) in vivo and in vitro.
نویسندگان
چکیده
Induction of drug-metabolizing enzymes (DMEs) is highly species-specific and can lead to drug-drug interaction and toxicities. In this series of studies we tested the species specificity of the antidiabetic drug development candidate and mixed peroxisome proliferator-activated receptor (PPAR) alpha/gamma agonist (S)-4-O-tolylsulfanyl-2-(4-trifluormethyl-phenoxy)-butyric acid (EMD 392949, EMD) with regard to the induction of gene expression and activities of DMEs, their regulators, and typical PPAR target genes. EMD clearly induced PPARalpha target genes in rats in vivo and in rat hepatocytes but lacked significant induction of DMEs, except for cytochrome P450 (P450) 4A. CYP2C and CYP3A were consistently induced in livers of EMD-treated monkeys. Interestingly, classic rodent peroxisomal proliferation markers were induced in monkeys after 17 weeks but not after a 4-week treatment, a fact also observed in human hepatocytes after 72 h but not 24 h of EMD treatment. In human hepatocyte cultures, EMD showed similar gene expression profiles and induction of P450 activities as in monkeys, indicating that the monkey is predictive for human P450 induction by EMD. In addition, EMD induced a similar gene expression pattern as the PPARalpha agonist fenofibrate in primary rat and human hepatocyte cultures. In conclusion, these data showed an excellent correlation of in vivo data on DME gene expression and activity levels with results generated in hepatocyte monolayer cultures, enabling a solid estimation of human P450 induction. This study also clearly highlighted major differences between primates and rodents in the regulation of major inducible P450s, with evidence of CYP3A and CYP2C inducibility by PPARalpha agonists in monkeys and humans.
منابع مشابه
Species differences in the response of liver drug metabolizing enzymes to EMD 392949 in vivo and in vitro
Laboratoire de Biologie Cellulaire, EA 3921, IFR 133, Faculté de Médecine et de Pharmacie, 25030 Besançon, France (L.R., A.B.) KaLy-Cell, Temis Innovation 18, rue Alain Savary, 25000 Besançon, France (L.R., C.V.-A., N.B.) Merck KGaA, Merck Serono, Non-Clinical Development, Toxicology, 64297 Darmstadt, Germany (G.T., S.O.M.) Merck KGaA, Merck Serono, Non-Clinical Development, DMPK, 85567 Grafing...
متن کاملMICROSOME-MEDIATED BENZO[A]PYRENE-DNA BINDING AND INHIBITION BY CYTOSOLIC FRACTIONS FROM LIVER AND SKIN OF ADULT AND WEANLING RATS
Biotransformation of benzo[a]pyrene (BaP) in the presence of microsomal fractions derived from liver and epiderm of adult and weanling rats was examined. The aim of this study was to evaluate the effect of age on the capacity of two organs in transformation of BaP. Subcellular fractions were prepared from skin and liver by ultracentrifugation and were used as the source of BaP metabolizing enzy...
متن کاملIn Vivo Toxicity Assessment of Bovine Serum Albumin and Dimercaptosuccinic Acid Coated Fe3O4 Nanoparticles
Background: Recently, applications of nanoparticles in many fields of medicine have been developed, due to their specific physical and chemical properties. Therefore assessment of their toxicity specially in the in vivo condition is necessary. Objectives: The aim of this study is to evaluation the effect of Fe3O4 nanoparticles coating by biocompatible compounds on their t...
متن کاملProtective effect of metformin on toxicity of butyric acid and arsenic in isolated liver mitochondria and langerhans islets in male mice: an in vitro study
Objective(s): Arsenic, a toxic metal in drinking water and butyric acid (BA) is a free fatty acid found in many foods. These two can induce oxidative stress in some tissues. The present study investigated the protective effect of metformin against toxicity induced by Arsenic (As) and BA in isolated mice liver mitochondria and pancreatic islets. Materials and Methods: In this study, liver mitoch...
متن کاملThe cardioprotective effects of 4-O-(2″-O-acetyl-6″-O- p-coumaroyl-β-D-glucopyranosyl)-p-coumaric acid (4-ACGC) on chronic heart failure
The 4-ACGC isolated from BP was prepared to investigate the cardioprotective effects on attenuating chronic heart failure in vivo and in vitro. A chronic heart failure (CHF) rat model was established to investigate the cardioprotective effects of 4-ACGC. From this, several cardiac function indexes were recorded. The inflammatory markers including tumor necrosis factor-α (TNF-α), Interleukin-6 (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 36 4 شماره
صفحات -
تاریخ انتشار 2008